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ARTICLE INFO ABSTRACT
Keywords: Injured tissues are susceptible to infections that suppress wound healing. Rapid and safe sterilization is therefore
Wound healing urgent for bacteria-infected wounds, especially under harsh conditions without antibiotic availability. In this
PhOtUreSmefiVe work, we developed a photoresponsive metal-organic framework (MOF) heterojunction that responds to 660 nm
Met‘a;—orgz?nllc framework light irradiation. It is composed of two kinds of MOFs (Prussian blue [PB] and PCN-224), which exhibited an
Anti acteria enhanced photocatalytic performance due to the accelerated charge transfer of the heterojunction and the fast
Heterojunction

separation of photogenerated electron-hole pairs between PB and PCN-224. The combination of the enhanced
photocatalytic performance and the intrinsic photothermal effect of PB endowed the MOFs heterojunction with
highly effective sterilizing rates of 99.84% and 99.3% against Staphylococcus aureus and its biofilm after 660 nm
light irradiation for 15 min, respectively. The iron and zirconium ions released from PB-PCN-224 composites
were biocompatible and their cytotoxicity was negligible. More importantly, in vivo experiments showed that PB-
PCN-224 can expedite wound healing.
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1. Introduction

An injury to the skin may interfere with the integrity of the epi-
dermis, dermis, connective tissue, and microcirculation, thereby in-
evitably leading to a wound [1]. Wound healing is a dynamic and
complex multicellular process involving extracellular matrix, cytokines
and many other factors [2]. Healing can be further complicated by
infections with bacteria such as Staphylococcus aureus (S. aureus), a
common skin and wound pathogen [3,4]. Therefore, research that fo-
cused on rapid promotion of wound healing and elimination of bac-
terial infections is particularly important.

In recent years, many materials have been developed for wound
sterilization, including metal ion fungicides [5,6], inorganic material
fungicides [7,8], organic material fungicides, and antibiotics [9-12],
but these materials have undesirable properties, such as biological
toxicity and low biocompatibility. In addition, the overuse of antibiotics
can lead to the emergence of drug-resistant bacteria [13]. Hence, novel,
portable, and inexpensive measures without adverse effects are needed
to combat microbial wound infections.

Some photoresponsive materials, such as IR-780 [14], TiO, [15],
Cu,MoS, [16], MoS, [17], and Prussian blue (PB) [18], have been
developed to kill germs or anticancer via the generation of reactive
oxygen species (ROS) or by hyperthermia. The corresponding strategies
are termed photodynamic therapy (PDT) and photothermal therapy
(PTT). ROS and hyperthermia can kill bacteria independently. How-
ever, excessive concentrations of ROS or temperatures above 60 °C may
be harmful to normal cells and tissues [19,20]. For this reason, thera-
pies that employ both strategies, by combining PDT with a low ROS
generation and PTT at a temperature below 60 °C, are often employed
to kill bacteria effectively while maintaining sufficient biosafety
[21,22].

One material that would favor this type of combined strategy is the
metal organic framework (MOF), an inorganic—organic hybrid material
consisting of organic ligands and metal nodes (metal ions or clusters)
linked by coordinate bonds [23]. MOFs have attracted much attention
because of their large specific surface area, high porosity, and ad-
justable metal nodes or organic ligands. MOFs have been widely used in
many fields, including gas adsorption [24], biomedicine [25], and
catalysis [26]. MOFs, as a semiconductor material, have also been
broadly studied as photocatalysts [27], as the bridging ligands in MOFs
can act as antennas that adsorb light and convert the light energy to
charges [28,29]. However, the key limitation to the effective use of
MOF-based photocatalysts is the inability to enhance their light ab-
sorption and conversion efficacy under visible light at long
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wavelengths. Other bottlenecks preventing high photocatalytic perfor-
mance of these materials include a lack of methods for separating the
photogenic electron hole pair and improving the charge separation
[30].

Photosensitive organic molecules, such as porphyrins, can be in-
corporated into the MOF as bridging ligands to obtain a wider optical
absorption range in the visible region. The ubiquity of natural or syn-
thetic porphyrin ligands in these materials is attributed to the versatility
of porphyrins in catalysis, light collection, and oxygen conversion [31].
The PCN is a well-known family of this type of MOF, and the Zr-based
porphyrin MOF is now attracting extensive attention for its rich struc-
tural types, excellent chemical stability, and adjustable functionality
[32]. However, these single-group spectroscopic catalysts are suscep-
tible to rapid electron-hole recombination; therefore, they must be
combined with other functional materials to form heterogeneously
structured photocatalysts that can facilitate charge transfer from pho-
toelectrons [33].

In this paper, we combined nanoparticles of the FDA-approved
photothermal agent Prussian blue (PB) with a porphyrin metal organic
framework (PCN-224). When irradiated with 660 nm red light, PCN-
224 increased the shift efficiency of electrons generated from PB,
thereby delaying the recombination of electron hole pairs and in-
creasing the ROS yield of PB-PCN-224. At the same time, the in-
troduction of PB endowed PB-PCN-224 with a good photothermal effect
under 660 nm light irradiation. This synergy of PDT and PTT resulted in
a 99.84% and 99.3% antibacterial rate against S. aureus and its biofilm,
respectively, for PB-PCN-224. Scheme 1 shows this rapid bactericidal
response of PB-PCN-224.

2. Experimental section
2.1. Preparation of PB

The PB nanoparticles were prepared by a simple method. Typically,
3 g PVP and 226.7 mg K3[Fe(CN)¢] were dissolved in 40 mL HCl
(0.01 M) and stirred in a 50 mL reactor for 30 min. The reactor was then
placed into a furnace and heated for 20 h at 80 °C. The precipitates were
centrifuged and washed five times with deionized water and with
ethanol. The products were collected after drying for 12 h at 80 °C.

2.2. Synthesis of PB-PCN-224

A 30 mg sample of zirconium oxychloride octachloride
(ZrOCl,-8H,0) was combined with 10 mg tetrakis(4-carboxyphenyl)

Scheme 1. Schema revealing the synergy of the ROS and photothermal effects in the germ-killing response of PB-PCN-224 under 660 nm light irradiation.
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porphyrin (TCPP), 2.8 g benzoic acid (BA), 10 mg PB, and 10 mL of
N,N-Dimethylformamide (DMF) and the mixed solution was then re-
acted at 90 °C in an oil bath at 300 rpm for 5 h. The compound was
allowed to cool to room temperature and then washed three times with
DMF and with ethanol. The precipitates were then placed into a 60 °C
furnace to dry for 12 h.

2.3. Characterization

The morphologies and sizes of materials were inspected by trans-
mission electron microscopy (TEM, Tecnai G20, FEI, USA) and field
emission scanning electron microscopy (FE-SEM, ZEISS Sigma 500).
The crystalline structure of materials was determined by X-ray dif-
fractometry (XRD, D8A25, Bruker, Germany) with a detection range
from 3 to 80°and a step size of 0.02°. Fourier transform infrared (FTIR)
images were recorded on a spectrometer (NICOLET iS10). The nitrogen
adsorption and desorption curves of the materials at 77 K were de-
termined by Brunauer-Emmett-Teller (BET) analysis (BK112T). The UV
spectra were recorded with an ultraviolet-visible (UV-vis) spectro-
photometer (UV-3600, Shimadzu, Japan). X-ray photoelectron spectra
(XPS) were obtained with an ESCALAB 250Xi instrument (Thermo
Scientific, USA). Inductively-coupled plasma atomic emission spectro-
metry (ICPAES) was conducted with an Optimal 8000 instrument
(Perkin Elmer, US). Room temperature photoluminescence (PL) mea-
surements were performed on a fluorescence spectrometer (LS-55, PE,
USA).

2.4. Photothermal effect test

The photothermal effect of the materials was monitored with a
thermal imager (Testo 875i, Testo Instruments International Trading
(Shanghai) Co., Ltd) by irradiating 200 pg/mL of different samples
(phosphate buffer saline (PBS), PB, PCN-224, and PB-PCN-224) with
660 nm LED light (0.3 W/cm?) for 15 min. The temperature change of
the materials was monitored with a thermal imager every three minutes
and an image was captured. A thermal imager was used to monitor the
temperature change of the PB-PCN-224 for three cycles of 15 min
heating and 15 min cooling.

2.5. Electrochemical test

Samples (4.0 mg) were dispersed in 1 mL ethanol and then 800 pL
naphthene was added and dispersed by ultrasonication. Subsequently,
50 pL of the resulting solution was dropped onto a piece of titanium
6 mm in diameter. Titanium flakes coated with sample were heated at
60 °C for 30 min. A standard three-electrode apparatus, with a platinum
sheet and an Ag/AgCl electrode as the auxiliary and compared elec-
trode, was used to study the photocurrent of the materials. The titanium
plates deposited with materials were used as the working electrode in a
CHI 660E electrochemical station (Shanghai Chenhua, China) equipped
with the illumination source (660 nm light). The three electrodes were
inserted into a beaker filled with 0.5 M Na,SO, electrolyte. The pho-
toreaction of the prepared photoelectrode (i.e., I-t) was measured for
180 s by testing the photocurrent densities under a short-cut light il-
lumination (light on/off cycle: 30 s) at a declinational potential of 0.5 V
vs. Ag/AgClL

2.6. Photodynamic test with 1,3-diphenylisobenzofuran (DPBF) and
electron spin resonance spectroscopy (ESR)

The reaction of DPBF with 'O, reduces the fluorescence intensity
centered at 420 nm. Samples (200 ng/mL) were first dispersed in DPBF
solution (dissolved in dimethyl sulfone) and followed by irradiation
under 660 nm red light (120 s, LED light, 0.3 W/cm?) and analysis with
an enzyme marker. The ESR spectra were recorded on a JES-FA200
spectrometer. TEMP (50 mM) was used as a spin trap for the detection
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of singlet oxygen during irradiation of samples by light. Spin traps were
ESR silent but formed stable radicals with an ESR signal after donating
electrons. Determination of *OH by electron paramagnetic ESR using
5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as the spin-trapping agent in
water, because *OH could react with DMPO rapidly to obtain DMPOOH.

2.7. Antibacterial test

The antibacterial capacities of the materials were assessed using S.
aureus (ATCC 29 213) and S. aureus biofilm through a spread plate
method. Firstly, 160 uL of bacterial solution (1 X 107 CFU mL™') was
mixed with the sample solution containing either 40 uL of PBS or 1 mg/
mL of PB, PCN-224, or PB-PCN-224 and the mixtures were transferred
to a 96-well plate in two groups. The first group was illuminated for
15 min with the 660 nm light, while the second group was incubated in
the dark for 15 min. After the illumination, 10 pL of bacterial solution
was extracted from each well and diluted 100-fold with Luria-Bertain
(LB) medium. A 20 pL volume of the diluted bacterial samples was
applied to agar plates and cultured at 37 °C for 24 h.

The antiseptic effectiveness against S. aureus biofilm was de-
termined as follows. A 200 pL volume of bacterial culture was co-cul-
tured in 96-well plates for 48 h at 37 °C. The bacterial suspension was
replaced with 200 pL of sterile Luria—Bertani (LB) medium every 12 h.
The plates with S. aureus biofilm were then washed with sterilized PBS
(pH = 7.4) and covered with 200 pL of the different materials (PB,
PCN-224, and PB-PCN-224; 1 mg/mL). The antibacterial steps above
were then repeated. The bacterial colonies on the plates were photo-
graphed, and the antibacterial rate was determined by counting the
number of colonies using the following formula (where A is the number
of colonies):

Antibacterial efficiency (%) = (A in control group — A in experimental
group)/A in control group X 100%

2.8. Bacterial morphology

The bacterial morphologies were examined by SEM after the anti-
bacterial experiment. The bacteria were fixed by removing the bacterial
slurry and adding 100 pL 2.5% glutaraldehyde to the 96 well-plate and
reacting for 2 h. The bacteria were then dehydrated sequentially in a
graded ethanol series for 15 min. The bacterial morphologies were
examined by SEM after drying.

2.9. Fluorescence staining of Live/Dead bacteria and detection of
intracellular reactive oxygen species

Live/Dead Bacterial Viability Kit (Molecular Probes, L-13152) was
employed to evaluate the antibacterial ability of materials. Both live
(green) and dead (red) bacteria were observed by a fluorescence mi-
croscope (IX73, Olympus, USA). DCFH-DA was used to detect the in-
tracellular reactive oxygen species.

2.10. Protein leakage

The bacterial membrane damage was detected using bichinchonic
acid (BCA) protein detection. At the end of the antibacterial experi-
ment, 150 pL of bacterial liquid was mixed with 150 pL PBS, and the
mixture was centrifuged. A 20 pL sample of the suspension was added
to200 pL of BCA reagent, and protein leakage was measured with a
microplate reader.

2.11. Invitro cell experiment

The mouse fibroblast cell line (NIH-3T3, Tongji Hospital, Wuhan)
was used in these experiments. The cells were co-cultured with samples
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for 1 day. Samples containing NIH-3T3 cells were washed with sterile
PBS, and the cells were immobilized with 4% formaldehyde for 10 min,
followed by washing with PBS. FITC (YiSen, Shanghai) was then added
for 30 min to stain the cells, which were then washed with PBS. DAPI
(YiSen, Shanghai) was then added for 30 s to dye the cells, followed by
washing with PBS. Images were captured from an inverted fluorescence
microscope.

The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide
(MTT) assay was used to assess the cytotoxicity of PB-PCN-224 (200 ug/
mL), PB (200 pg/mL), and PCN-224 (200 pg/mL). NIH-3 T3 cells were
cultured in 96-well plates in cell nutrient medium for 24 h. The medium
was then removed and new medium containing the samples (200 pL,
with a sample to medium ratio of 1:9) was added and culture was
continued for a further 24 h. The culture medium was then replaced
with MTT solution (200 uL, 0.5 M) at 37 °C. After 4 h, the MTT solution
was removed and 200 pL of DMSO solution was added to the well and
placed for 15 min on a shaker with continuous rotation. A 100 pL vo-
lume of the supernatant was removed and its absorbance (OD) was
measured at 490 nm in a microplate reader.

2.12. In vivo animal wound healing test

Male Wistar rats (180-200 g body weight) were provided by Beijing
Weitong Lihua Experimental Animal Technology Co., Ltd. The Institute
of Radiation Medicine, Chinese Academy of Medical Sciences author-
ized the test. The rats were housed singly in cages for 3 days and then
randomly divided into the following three groups with three rats per
group: control group (PBS), 3 M group (routine wound treatment,
Minnesota Mining and Manufacturing Medical Equipment (Shanghai),
Ltd), and test group (PB-PCN-224). After anesthesia with 16% chloral
hydrate, the backs of rats were slashed and 20 pL diluted bacterial
solution (10% CFU/mL) was added to the wound, along with 20 pL of
either PBS (control group and 3 M group) or 200 pg/mL of PB-PCN-224
(test group). After illuminated with 660 nm light (0.3 W/cm?), the
wound in the control group was bandaged with opaque sterile medical
tape. The 3 M group was treated with a standard 3 M wound dressing
applied to the wound. The wounds of the experimental group were
tightly wrapped with nontransparent sterile medical tape. The rats were
then housed at standard temperature.

The wounds were photographed at 2, 4, and 8 days after treatment.
The tissues were dyed with Giemsa and hematoxylin/eosin (H&E) stains
to assess the quantity of bacteria around the wounds and the course of
wound healing. The primary organs (heart, liver, spleen, lung, and
kidney) were harvested on day 8 and stained with H&E to evaluate the
in vivo biotoxicity of the materials.

3. Results and discussion
3.1. Characterization

The TEM images of the samples showed pristine PB particles with an
average diameter of 260 nm (Fig. 1a) and a spherical structure of the
PCN-224 samples with a uniform size distribution of about 70 nm (Fig.
S1), which were well accordance with the corresponding SEM images
(Fig. S2a, S2b). The TEM image of PB-PCN-224 composite showed that
PCN-224 had grown around the PB nanoparticles, possibly due to the
presence of PVP molecules on the surface of the PB nanoparticles
(Fig. 1b and Fig. S2c). As shown in Fig. S3a, the 0.50 nm, 0.36 nm and
0.24 nm lattice fringe spacing represented the (200), (220) and (420)
plane of PB.[34] After attaching PCN-224, the lattice of PB had not
changed (Fig. S3b). Possibly, the C=0 groups in the PVP molecules had
coordinated with zirconium ions [35], thereby facilitating the growth of
PCN-224 on the surface of the PB nanoparticles. Moreover, as shown in
Fig. S4, the zeta potentials of PB, PCN-224 and PB-PCN-224 were
—23.2, —11.1 and —11.2 mV respectively, and the zeta potential data
of PCN-224 and PB-PCN-224 were basically the same, indicating that
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PCN-224 grew around PB.

A crystal structure diagram for PB-PCN-224 was showed in Fig. 1c.
Energy-dispersive X-ray spectroscopy (EDS) data confirmed that PB-
PCN-224 contained all the elements those in PB and PCN-224, in-
dicating the co-existence of the two kinds of MOFs (Fig. S2d, S2e, S2f).
The subsequent TEM mapping further demonstrated the successful
synthesis of PB-PCN-224 (Fig. 1d). When PCN-224 was grown on the
surface of PB, zirconium appeared and was mainly distributed around
PB, with a location of this element showing the same distribution was
the same as that of PCN-224. X-ray diffraction (XRD) charts were used
to establish the crystallographic structures of the materials (Fig. 1e).
The observed diffraction peaks were consistent with previous reports
and indicated a very high crystallinity of the PB [35]. When compared
with PB alone, the PB-PCN-224 composite demonstrated the diffraction
peaks of PB as well as peaks at 20 = 4.591°, 6.494° and 7.956° which
respectively represent the (002), (022) and (222) crystal planes of
PCN-224 (Fig. S5) [36].

The basic structures of the PB, PCN-224, and PB-PCN-224 compo-
sites were further examined by Fourier transform infrared spectroscopy
(FT-IR) (Fig. 1f). In the spectra, the peak at 2090 cm ! represented the
stretching vibration of the C=N bond in the PB nanoparticles, and the
peak at 499 cm ™! represented the bending vibration of Fe—C=N—Fe
[35]. In pure PCN-224, the asymmetric vibration absorption of C=0
bond in H,TCPP appeared at 1701 cm ™' [37]. The peaks around at
1600-1500 cm ™! were attributed to the stretching oscillation of C=C
bond in the benzene ring [36]. The C—H oscillating vibration of the
pyrrole ring formed a triplet state belt at 1020, 985, and 966 cm ™!
[37]. All the main characteristic peaks of PB and PCN-224 appeared in
the FT-IR spectrum of the coupled PB-PCN-224 hybrid material.

The nitrogen adsorption and desorption experiment revealed the
porosity of the material. As shown in Fig. 1g, the specific surface area of
PB-PCN-224 was 47.131 mz/g, smaller than that of PCN-224
(61.393 mz/g), but the pore sizes of PB-PCN-224 and PCN-224 were
both 1.614 nm, confirming that the addition of PB could reduce the
specific surface area of PB-PCN-224 (Fig. S6). Since the size of the pore
remained essentially unchanged, the presence of PB did not appear to
affect the pore size distribution.

The elementary composition of PB-PCN-224 was determined by XPS
analysis. The Fe 2p XPS spectra showed that the binding energies of
Fe?* 2ps,, and 2p;,», were situated at 708.7 and 721.6 eV (Fig. S7a),
while the peak at 713.07 €V could be attributed to partially oxidized
Fe®* [38]. The three primary peaks of the N 1s indicated the existence
of three chemically different types of nitrogen atoms =N— (399.3 eV),
C—N ([Fe(CN)s]*) (397.4 eV), and —NH (396.8 eV) (Fig. S7b) [39,40].
The C 1 s spectrum revealed the presence of C—H/C—C (284.2 eV), C-O
(284.6 eV), 0O=C—O0 (288.4 eV), and C-N (285.5 eV) (Fig. S7c) [41].
The O 1s spectrum was shown in Fig. S7d. The Zr 3d spectrum showed
the binding energies of 182.4 and 184.7 eV, belonging to Zr 3ds,, and
Zr 3ds,,, respectively (Fig. S7e) [42].

3.2. Photoelectrochemical characterization and band structure

The UV-visible diffuse reflectance spectra were recorded to evaluate
the optical properties of the samples. Fig. 2a shows the absorption of
PCN-224, which was mainly in the visible region, but its absorption was
relatively weak. The addition of PB significantly increased the absorp-
tion of PB-PCN-224 in the visible region, particularly at 500-800 nm.
Therefore, PB-PCN-224 had a greater light absorption capacity than
PCN-224. The photoluminescence (PL) of the materials was primarily
due to the recombination of the photoinduced electrons and holes.
Generally, the possibility of this photogenic electron-hole pair re-
combination of this material decreased as the fluorescence intensity
decreased, indicating a better photocatalytic effect of this material [43].
The PL spectrum in Fig. 2b showed lower fluorescence intensity for PB-
PCN-224 than for the other samples. This might reflect the fast shift of
electrons from PB to PCN-224 down the heterojunction, which would
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Fig. 1. Transmission electron microscopy (TEM) images of (a) Prussian blue nanoparticles (PB), and (b) PB-PCN-224; (c) The crystal structure diagram of PB-PCN-
224; (d) High resolution TEM images of PB-PCN-224; (e) XRD of PB and PB-PCN-224; (f) FT-IR of PB, PCN-224, PB-PCN-224; (g) N, adsorption-desorption isotherms
of PCN-224 and PB-PCN-224. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

impede the recombination of photogenerated electrons and holes.

The instantaneous photocurrent responses of the three materials
were detected under 660 nm red light irradiation (Fig. 2c). When the
light was on, a photocurrent was evident, but no response was observed
in the dark, confirming that light was necessary for the generation of
charge carriers. The photocurrent diagram showed that PB-PCN-224
had the highest photocurrent response of the three samples, confirming
the fast charge separation between PB and PCN-224 and the low elec-
tron-hole pair recombination rate [44].

The negative scan of the linear sweep voltammetry (LSV) curve was
showed in Fig. 2d. When compared with PB-PCN-224 in the dark, ir-
radiated PB-PCN-224 showed a significant increase in photocurrent.
This PB-PCN-224 photocurrent was also obviously larger than that of
PB and PCN-224, thereby confirming the separation of electron-hole
pairs in PB-PCN-224. Electrochemical impedance spectroscopy (EIS)
measurements also indicated that PB-PCN-224 had the lowest im-
pedance under illumination (Fig. 2e). This phenomenon verified that
the PB-PCN-224 heterojunction had valid charge separation arising
from a lessening of the recombination of electron-hole pairs. Taken
together, these results further confirmed that PB-PCN-224 promoted
photoelectron transfer and inhibited electron-hole pair recombination
under 660 nm light irradiation.

In general, the plots of the Kubelka-Munk function versus the
bandgap energy from the UV-visible diffuse reflectance spectra showed
that the PCN-224 had a band gap of about 1.81 eV, while PB had a band
gap of about 1.75 eV (Fig. S8). The conduction band (CB) and valence
band (VB) (vs. Ag/AgCl) of PB were obtained as described previously
[45]. The position of the CB of PCN-224 at —0.8 V vs. Ag/AgCl was

obtained from published work [46], and the VB of PCN-224 was cal-
culated as 1.01 V vs. Ag/AgCl, associated with the tauc plot of PCN-224
(Fig. S8). The photocatalytic mechanism of PB-PCN-224 was summar-
ized in Fig. 2f.

The band structure of PB-PCN-224 was a type II heterojunction.
Under irradiation with 660 nm light, PB and PCN-224 were excited to
generate electron-hole pairs. The different band gap widths of the two
materials allowed separation of the generated electron-hole pairs and
transferred between their CB and VB. Because the CB value was more
negative for PB (—1.21 V vs. Ag/AgCl) than for PCN-224 (-0.8 V vs. Ag/
AgCl), the photo-generated electrons on the CB of PB could be trans-
ferred directly to the CB of PCN-224, and the residual h* in the VB of
PCN-224 was then shifted toward the VB of PB, thereby restraining the
recombination of the photo-generated electron-hole pair. Since the re-
combination of the electron-hole pair of PCN-224 was effectively con-
tained, the production of singlet oxygen in PB-PCN-224 would be sig-
nificantly increased.

In the PB-PCN-224, only single oxygen was generated because hy-
droxyl radicals were generated under the condition where the VB po-
sition of the photocatalyst was higher than that of H,O/-OH pair
(+1.99 V vs. NHE). By contrast, the VB position of the synthesized
material was only 1.01 V vs. Ag/AgCl or 1.23 V vs. NHE, or significantly
lower than that of H,O/*OH pair; therefore, hydroxyl radicals could not
be generated [47,48]. Many literatures had also indicated that PB did
not produce reactive oxygen species, while PCN-224 only produced
singlet oxygen (*0,) [49,50,46,511.
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3.3. Photodynamic and photothermal characterization

The compound 1, 3-diphenyl isobenzofuran (DPBF) could be used as
a 'O, collector, as it reacted with 'O, quickly to form a product with
decreasing absorption strength at about 420 nm [52]. For the PB group,
the UV absorption peak of DPBF solution was basically unchanged after

120 s exposure to 660 nm (0.3 W/cm?) (Fig. 3a). By contrast, the ab-
sorption intensity of PCN-224 and PB-PCN-224 under the irradiation of
660 nm light decreased gradually (Fig. 3b and c), indicating the gen-
eration of a large amount of '0,. At the same time, the generation of
singlet oxygen only was consistent with previous literature reports
[53,54]. Simultaneously, as shown in Fig. S9, the PCN-224 and PB-PCN-
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antimicrobial ratios against (c) S. aureus, and (d) S. aureus biofilm according the spread plate pictures. Error bars indicate means + standard deviations: *p < 0.05,
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224 had absorption at around 420 nm, but PB had no absorption at
420 nm. So after these three materials were mixed with DPBF, the UV
absorption peak of DPBF at 0 s would be different. As shown in Fig. S10,
the absorption of DPBF was basically unchanged under the dark con-
dition, indicating that the decline of DPBF absorption was dependent on
the production of reactive oxygen species by the photoactivated ma-
terial rather than the adsorption by the material itself. However, the
ROS yield of PCN-224 was smaller than that of PB-PCN-224 (Fig. 3d),
reflecting the effect of the heterojunction between PB and PCN-224,
which expedited the shift and separation rate of photogenic electron-
hole pairs that were conducive to the generation of ROS (Fig. 2). At the
same time, we also synthesized PCN-224 doped with different amounts
of PB, which were 5-PB-PCN-224, 10-PB-PCN-224 (that was, PB-PCN-
224), and we also tested their ability to generate active oxygen. It was
found that with the increase of PB doping, its ability to produce active
oxygen also increased (Fig. S11). The electron spin resonance (ESR)
spectra of MOF was detected. The 2, 2, 6, 6-Tetramethylpiperidine
(TEMP) was used as a singlet oxygen capture agent [55], but the TEMP
solution was strongly alkaline, and PB would dissolve under alkaline
conditions. The UV-visible absorption spectrum of PB showed that PB
would be decomposed no matter it was under light or dark conditions,
so ESR cannot be used to measure the singlet oxygen of the material
(Fig. S12). As shown in Fig. S13, 5,5-dimethyl-1-pyrroline-N-oxide
(DMPO, 0.1 mol/L) was used as a capture agent for hydroxyl radical
(*OH) [56], no matter what kind of material (PB, PCN-224, PB- PCN-
224) would not produce hydroxyl radicals.

PB-PCN-224 had strong absorption intensity in the range of
500-800 nm (Fig. 2a), so it might have a good photothermal effect
under 660 nm light irradiation. The heating temperature curve of the
sample was shown in Fig. 3e. The sample was irradiated with 660 nm
light for 15 min (0.3 W/cm?). After 6 min of irradiation, the surface
temperatures of PB and PB-PCN-224 increased to 58.7 °C and 51.6 °C,
respectively. By contrast, under the same condition, the temperature of

PCN-224 only increased to 38.4 °C, indicating that PB was the main
source of photo-induced hyperthermia.

Fig. S14 shows the real-time photothermal image curves corre-
sponding to Fig. 3e. As shown in Fig. 3f, the photothermal stability of
PB-PCN-224 under 660 nm light irradiation was determined by
studying on—off cycles of the laser during the illumination of PB-PCN-
224. Stable temperature variations and almost unaltered maximal
temperatures were observed, which verified the excellent photothermal
stability of PB-PCN-224.

3.4. Antibacterial test

A plate coating method was used to show the antibacterial effect of
the materials. The antibacterial rate was determined directly from the
number of bacterial colonies. The PBS group (control group) showed
many bacterial colonies following 660 nm red light illumination or a
dark treatment for 15 min, indicating that 15 min of light exposure had
no effect on bacterial viability (Fig. 4a and 4b). Obviously, the PB and
PCN-224 groups had low antibacterial efficiency against S. aureus
(77.47% and 54%, respectively, Fig. 4c) and S. aureus biofilm (45% and
27.33%, respectively, Fig. 4d). By contrast, the PB-PCN-224 group
showed excellent antibacterial properties after 15 min irradiation in
660 nm red light, as only a few bacterial colonies were present on plate.
The corresponding antibacterial efficiency against S. aureus and its
biofilm was 99.84% (Fig. 4c) and 99.30% (Fig. 4d), respectively, which
indicated that PB-PCN-224 could rapidly kill bacteria under 660 nm
light irradiation for 15 min. These results also showed that PTT alone
was more effective than PDT alone, as demonstrated by the diffusion
plate results for the PB and PCN-224 groups. Therefore, a single model
incorporating PTT or PDT antibacterial processes did not completely
and effectively eradicate bacteria. The antibacterial effect against S.
aureus was higher with the combination of PTT and PDT than with PTT
or PDT alone. In addition, we also summarized the latest antibacterial



Y. Luo, et al.

PB

Control

(a)

Dark

Light

(b)

Dark

Light

Chemical Engineering Journal 405 (2021) 126730

PCN-224 PB-PCN-224

Fig. 5. SEM pictures of the morphology of bacteria treated with or without 660 nm light irradiation. (a) S. aureus and (b) S. aureus biofilm.

—_
Q
N

N 660 nm (-)
660 nm (+)

Control PCN-224 PB PCN-224

(=) - =N
(-] N o
1 1 1

Protein leakege (C/C)
o
5

o
o
1

—
O
N

—~ 1.6 -660nm(—)
L\? 660 nm (+)
o
=~ 1.2-
Q
o]
Q
S 08
o]
£
(]
w 0.4
e
o
0.0-

Control PCN-224 PB-PCN-224

Fig. 6. The protein leakage concentration for the bacteria treated or not treated with 660 nm light irradiation (a) S. aureus and (b) S. aureus biofilms. *P < 0.05.

literature and found that photothermal and photodynamics were widely
used in antibacterial research (Table S1).

We also explored whether the structure of the material was changed
before or after antibacterial test. As shown in Fig. S15, the morphology
and structure of the material before and after the antibacterial tests
were essentially unchanged, indicating that the material had good an-
tibacterial stability.

S. aureus and its biofilms, when cultured with the control group,
showed normal morphology with a smooth and complete surface fol-
lowing the treatment of light irradiation or in the dark (Fig. 5a and 5b),
showing that the PBS had no bacteriostatic effects under light

condition. The bacterial membranes of all samples remained intact and
smooth under the dark conditions, indicating that none of the samples
had significant antibacterial activity in the dark. As a contrast, in the PB
and PCN-224 treatment groups, S. aureus showed varying degrees of
deformation after 15 min of exposure to 660 nm light, as revealed by
membrane damage of the cultured bacteria. More severe membrane
contraction and even rupture were observed in the bacteria in the PB-
PCN-224 group (red arrow).

The viability of the bacteria was assessed by the live/dead (green/
red) staining assay. As shown in Fig. S16, when there was no light ir-
radiation, most of the fluorescent images were green, indicating that
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the material itself had no bactericidal effect. After irradiating with
660 nm light for 15 min, part of the red fluorescence appeared in the PB
and PCN-224 groups, while PB-PCN-224 basically had no green fluor-
escence, indicating that under the synergistic effect of ROS and pho-
tothermal, PB-PCN-224 had a good antibacterial effect. The live/dead
analysis results were consistent with the plate coating results. DCFH-DA
was used to measure intracellular ROS, and ROS detection assay was
done via fluorescence microscopic method. As shown in Fig. S17, in
dark conditions, ROS were not produced in bacteria. After illumination
for 15 min, the bacteria in PB group, PCN-224 group and PB-PCN-224
group all showed green fluorescence, among which PB-PCN-224 group
showed the brightest green fluorescence, indicating that the bacteria
produced more ROS.

In summary, these findings suggested that the synergistic effect of
PTT and PDT was responsible for effective sterilization in a short time.
As shown in Fig. 6a and 6b, the protein leakage level of bacteria in the
PB and PCN-224 group was about 1.1-1.3 times that of the control
group after 660 nm light irradiation for 15 min. This confirmed that the
membrane of bacteria in the two groups was weakened by the ster-
ilization process under 660 nm light irradiation, in agreement with the
spread plate results (Fig. 4) and the morphological observation (Fig. 5).
In contrast, the greatest protein leakage was seen for the PB-PCN-224
group, at 1.7 times and 1.6 times higher than the one in the control
groups, respectively, indicating that PB-PCN-224 effectively killed
bacteria by severely destroying their membranes and the subsequent
proteins leakage under 660 nm light illumination for 15 min.

3.5. Cytotoxicity test

Cytotoxicity was measured by MTT experiments. After one day of
treatment, the cell viability of the PB, PCN-224 and PB-PCN-224 groups

was 81.29%, 95.96% and 81.45%, respectively, when compared with
the control group (Fig. 7a). The MTT data confirmed that none of the
samples were significantly cytotoxic and that PB and PCN-224 had
excellent biocompatibility. Further cytotoxicity assessment of the
samples by fluorescence staining to observe the cell morphology con-
firmed that all the cells showed spindle proliferation morphology and
showed polygons with filamentous pseudopods and lamellar liposome
(Fig. 7b). This might be because the porous structure and large specific
surface area of MOF could provide more active sites, so that the fila-
mentous pseudopods of the cell had more anchoring points, which was
conducive to the adhesion and proliferation of cells. At the same time,
iron ions and zirconium ions released from PB-PCN-224 were metal ions
with low toxicity and good biocompatibility (Fig. 8a and b), and iron
ions could promote cell differentiation through the secretion of collagen
[57,58,59], so the material had good biocompatibility.

3.6. Animal experiment

The course of wound healing in the rat wound model at different
time points were showed in Fig. S18. The wounds were distinctly
smaller in the experimental group treated with PB-PCN-224 than in the
other groups after 8 days of therapy. During the experiment, after two
days of treatment, all groups showed severe bacterial infections, as
revealed by Giemsa staining (Fig. 9a, red arrows). The numbers of at-
tached bacteria around the wound were much lower in the test group
treated with PB-PCN-224 than in the control and 3 M groups. The
number of neutrophils in the soft tissue also indicated bacterial infec-
tion, as neutrophils rapidly migrate from the circulating blood to the
sites of infection in response to infection. As shown in Fig. 9b, H&E
staining revealed a number of segmented neutrophils (red arrows)
around the wound, indicating severe bacterial infection. This infection
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was particularly evident in the 3 M and control groups during the first
4 days. By contrast, the number of neutrophils in the test group was
small, and most of the cells were normal, suggesting a relatively small
infection and confirming the strong antibacterial activity of PB-PCN-
244. Histological analysis of the major organs (heart, liver, spleen, lung
and kidney), as shown in Fig. S19, did not reveal any aberrant struc-
tures or injuries after 8 days of therapy, suggesting that materials were
safe for in vivo use.

4. Conclusion

PB-PCN-224 with photothermal and photodynamic effects was de-
signed and manufactured. The biomaterial had 99.84% and 99.3% ef-
fective against S. aureus and its biofilm under irradiation with 660 nm
light. PB-PCN-224 had no obvious biological toxicity. In conclusion, the
combinations of synergistic antibacterial materials appear to be pro-
mising methods for sterilization without adverse side effects.
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