Chemical Engineering Journal 455 (2023) 140857

Chemical
Engineering
.. Journal

Contents lists available at ScienceDirect

Chemical Engineering Journal

FI. SEVIER

journal homepage: www.elsevier.com/locate/cej

Check for

The combination of S-doped ZIF-8 with graphene oxide for enhanced o
near-infrared light photocatalytic and photothermal sterilization

Ziling Zhou ", Huiping Zhu ™", Shuilin Wu*', Yuelin Lv", Yufeng Zheng‘, Dafu Chen®,
Shengli Zhu ©, Zhaoyang Li®, Zhenduo Cui , Xiangmei Liu ™"

2 Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and
Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of
Materials Science & Engineering, Hubei University, Wuhan 430062, China

Y School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China

€ School of Materials Science and Engineering, Peking University, Beijing 100871, China

d Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan
Hospital, Beijing 100035, China

€ School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin
University, Tianjin 300072, China

ARTICLE INFO ABSTRACT

Keywords: The problem of bacterial resistance caused by the overuse of antibiotics was a constant threat to human health.
Photocatalytic Photocatalytic therapy was an important tool to address this problem but was limited by its photocatalytic
Sterilization

properties and biocompatibility. Herein ZIF-8 was doped by sulfur (S) and then combined with graphene oxide
(GO) to form a heterojunction (S-ZIF-8/GO). The photocatalytic performance of the composite was significantly
enhanced compared to that of the single component. The underlying mechanism is as following factors. On the
one hand, S doping induced the formation of the Zn-S bond in ZIF-8, thus improving NIR light absorption and the
yields of photogenerated electron-hole pairs. On the other hand, the interface between S-ZIF-8 and GO accel-
erated the transfer of photogenerated electrons from S-ZIF-8 to GO. In addition, the S-ZIF-8/GO has even better
photothermal performance. Further experiments revealed the bacteria-killing mechanism of S-ZIF-8/GO, i.e., the
bacterial cell membrane was destroyed with increased permeability by hyperthermia caused by the photothermal
effect, allowing the leakage of inside protein and the entrance of ROS into the bacteria to destroy the inside
substances. In vivo animal tests showed that the composite was beneficial for wound healing due to the slow
release of Zn?" ions from S-ZIF-8/GO.

Wound healing
Metal-organic framework
Graphene oxide

1. Introduction [13,14], and organic antibacterial peptides [15-17], showed effective

antibacterial activity. However, the endogenous antibacterial material is

Pathogenic bacterial infection often occurs during the wound healing
process, which usually leads to the extension of the healing process and
even deterioration of wounds when disinfection is not appropriate and
timely [1-3]. Traditional antibiotics treatment for bacterial infections
has been proven to cause bacterial resistance and even superbugs due to
the abuse/overuse of antibiotics [4-7]. Antibiotic-free strategies have
been developed to fight bacterial infections. For example, some endog-
enous antibacterial materials such as Ag*-release materials [8,9], zinc
oxide [10,11], Cu®*t-release materials [12], quaternary ammonium salt

a double-edged sword, which can kill bacteria but also bring toxicity to
normal cells and tissues. For example, silver ions cannot be excreted
from the body and harm the organs after accumulation to a certain
concentration [18]. Additionally, the sustainable release of antibacterial
factors from these endogenous antibacterial agents leads to bacteria
resistance, even for nanosilver [19]. Therefore, it is necessary to develop
exogenous antibacterial strategies to treat bacterial infections without
inducing toxicity and bacteria resistance.

As one of the important exogenous bacteria-killing strategies,
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Scheme 1. S-ZIF-8/GO preparation process.

phototherapy is a portable, low-cost and eco-friendly treatment method
for bacterial infections [20-22], which includes photodynamic treat-
ment and photothermal therapy. Some semiconductor materials such as
ZnO, TiOz, MoS;3, WS,, and g-C3N4 can be excited to produce radical
oxygen species (ROS) under light irradiation to kill bacteria [23-27].
However, the photocatalytic performance of these semiconductors is
restricted due to the rapid recombination of photogenerated electron-
hole pairs as well as the lower adsorption ability of oxygen species,
resulting in poor ROS yields. It is critical to find suitable photo-
responsive materials with enhanced photocatalytic performance and
stronger oxygen species adsorption ability.

As one of the metal-organic frameworks (MOF), the microporous
structured ZIF-8 is formed by coordinating Zn?* with 2-methylimida-
zole, and this kind of MOF possesses an ultra-high porosity and huge
internal surface area [28,29]. The unique structure endows MOF-based
materials with various applications such as catalysis [30,31], drug de-
livery [32], disinfection [33-35]. ZIF-8 has also been utilized for drug
delivery for treating cancer and bacterial infections [36,37]. The
shortcoming of this material is the poor light absorption ability, rapid
recombination of photogenerated electron-hole pairs, and excessive
release of Zn?*, inducing poor photocatalytic performance and cyto-
toxicity [38]. Adding heteroatom dopants (B, N, S, and P) to the C matrix
is a feasible strategy for creating defects and impressively improving
adsorption capacity and catalytic performance [39]. Among the alien
atoms, S was recognized as a preeminent dopant for creating defects
[40]. Recent studies have shown that introducing S into composites can
lead to increased interfacial electron transfer, NIR light absorption
ability, and a decrease in the recombination rate of electron-hole pairs
[41,42]. According to previous reports, modulating the electronic
structure of MOFs with S under thermodynamic conditions can produce
greater intrinsic activity and optimal adsorption energies, leading to
exceptional photocatalytic performance and improved chemical stabil-
ity [43]. Furthermore, it has been reported that some two-dimensional
materials such as Ti3CyTy, GO and MoS, nanosheet have excellent
photocatalytic or photothermal properties, and can be used to tune the
bandgap of semiconductors by forming heterojunction with them, thus
improving the photocatalytic performance of the materials [44-46].

In view of the above-mentioned, we propose a hypothesis whether a
composite can be constructed by combining S-doped ZIF-8 with GO,
which has stronger NIR light absorption ability and enhanced photo-
catalytic performance than a single component, thus possessing
powerful photocatalytic bacteria-killing ability. Based on the

hypothesis, as shown in Scheme 1, in a double temperature zone tube
furnace, the synthesized ZIF-8 MOF was doped by sublimed S, then
combined with GO by electrostatic adsorption. During doping process,
the S replaced the N in ZIF-8 partially to form Zn-S bonds with Zn nodes.
Theoretic calculation disclosed that the Zn-S bond in S-ZIF-8/GO
attracted photogenerated electrons and accelerated their transfer from
S-ZIF-8 to GO.

2. Experimental method
2.1. Preparation of ZIF-8

We prepared ZIF-8 by growing metal Zn?" and organic imidazolate
linkers in methanol (CH3OH) using coordination chemistry solutions
according to previously reported methods [47]. Using a typical synthesis
process, we solubilized 2.75 g of 2-methylimidazole and 2.293 g of Zn
(NO3),-6H50 in 100 mL of CH30H, respectively, and whisked for 2 h.
We washed the obtained ZIF-8 3 times using CH3OH and left it to dry in
an oven for 24 h at 40 °C.

2.2. Preparation of S-ZIF-8

We positioned 0.88 g S powder upstream in the tube furnace, and
0.08 g ZIF-8 downstream. Next, we filled the tube furnace with Ar gas.
We maintained the temperature zone on the sublimation-S side at 230 °C
and the temperature zone on the ZIF-8 side at 200 °C for 2 h under
flowing Ar. Thereafter, when the tube furnace cooled, we collected S-
ZIF-8.

2.3. Preparation of S-ZIF-8/GO and ZIF-8/GO

We mixed 20 mL of deionized water (DI) with 0.04 g of GO to obtain
solution A, then treated solution A with ultrasonic dispersion for 2 h,
mixed it with 0.16 g of S-ZIF-8, and whisked it for 24 h. We obtained S-
ZIF-8/GO after centrifugation of the products, then washed it three
times in ethanol and DI, and dried it. We prepared ZIF-8/GO to study the
photocatalytic mechanism of S-ZIF-8/GO. We prepared ZIF-8/GO in the
same way as S-ZIF-8/GO, except that we used ZIF-8 instead of S-ZIF-8.

2.4. Photothermal performance testing of materials

We prepared 0.1 mg/mL aqueous solution samples separately and
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placed 500 pL of aqueous solution in 1.5 mL EP tubes. We irradiated the
EP tubes with 808 nm NIR light (0.24 W/cmz) for 20 min, using DI as a
control (Ctrl), and recorded temperature changes with a thermal cam-
era. We obtained the heating—cooling curve of S-ZIF-8/GO (0.1 mg/mL)
under 808 nm NIR light irradiation and calculated its photothermal
conversion efficiency (1) according to the following equation [48]:

1= [1S X (Twax = To) = Q]/[I x (1 =107} ]

In the formula, h, S, Tmax, To, Q, I, and A denote the heating transfer
coefficient, surface area of the heated area, maximum temperature,
ambient temperature, heat absorption energy of the orifice plate, power
of the 808 nm laser, and absorbance of samples at 808 nm, respectively.

During the cooling process, we calculated the time constant (zs) ac-
cording to the following equation:

t=—1,xInf =1In(T — Tp)/(Tmax — To)

Then, assuming that the temperature of the system was highly stable,
with the heat input equal to the heat output, we used the following
equation:

hS = m, x C,/z,

In the formula, mg and C; are the mass and specific heat capacities of
water, respectively.

2.5. Material characterization

We employed field emission scanning electron microscopy (FE-SEM,
OPTON, SIGMA500, China) and high-resolution transmission electron
microscopy (HRTEM, FEIL, FEI Tecnai 12, USA) to investigate the
morphology of the synthesized samples. We used energy-dispersive
spectroscopy (EDS) to analyze the elemental distributions of the syn-
thesized materials, and employed X-ray diffraction (XRD, D8A25,
Bruker, Germany) to analyze the crystalline phases of the samples. We
studied the elemental constitution of the materials using X-ray photo-
electron spectroscopy (XPS, ESCALAB 250Xi, Thermo Scientific, USA).
We investigated the diffuse reflectance spectra of the synthesized sam-
ples using an ultraviolet-visible (UV-vis) spectrophotometer (UV-3600,
Shimadu, JP). We assessed the photothermal and photocatalytic prop-
erties of the synthesized samples under an 808 nm light (LOS-BLD-0808,
China), recorded the temperature changes in the synthesized samples
using a thermal imager (FLIR-E50, FLIR-SYSTEMS-Inc, USA), and
analyzed the photoluminescence (PL) spectra with a fluorescence spec-
trometer (LS-55, PE, USA).

2.6. Photoelectrochemical testing

We investigated the photoelectrochemical properties of the materials
using an electrochemical workstation (CHI660E, China) and performed
photocurrent and electrochemical impedance spectroscopy (EIS) tests
using an 808 nm NIR light source (0.24 W/cm?) with a 71.021 g/L
NaySO4 solution as the electrolyte. To prepare the working electrode, we
thoroughly mixed 3 mg of sample and 200 pL of Nafion with 1 mL of DI,
and then we dripped 150 pL/mL of the mixed solution onto the ITO glass
electrode and dried it.

2.7. ROS test

We detected ROS generation in the samples with 2',7’-dichloro-
fluorescein (DCFH) under 808 nm (0.24 W/cm?) NIR light irradiation
and reacted the DCFH with ROS to generate fluorescence that was
detectable with a microplate reader. We added 160 pL of prepared DCFH
solution to a 96-well plate, and then transferred 40 pL of aqueous sample
solution (0.5 mg/mL) to the wells. We measured the ROS yields of the
samples every 2 min using the microplate reader after 20 min of irra-
diation with an 808 nm NIR light. The trapping reagent to detect
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superoxide anion (-O3) was 5,5-dimethyl-1-pyrrolin-N-oxide (DMPO),
and 200 pL aqueous solution of the material (0.5 mg/mL) and 1 pL
trapping reagent under 808 nm NIR light irradiation. We used 2,2,6,6-
tetramethylpiperidine (TEMP), 200 pL of aqueous solution of the ma-
terial (0.5 mg/mL), and 1 pL of trapping reagent as the trapping reagent
to detect singlet oxygen (105) under 808 nm NIR light irradiation. We
employed electron spin resonance (ESR, JES-FA200, JEOL, Japan) to
detect -O7 and 'O, in the sample generation.

2.8. Theoretical calculations

We used the Vienna ab initio simulation package (VASP) to calculate
the spin-polarized density functional theory (DFT) of the samples based
on the Perdew-Burke-Ernzerhof (PBE) formulation within the general-
ized gradient approximation (GGA). The ionic cores were described as
adopting projected augmented wave (PAW) potentials using a plane-
wave basis set with a kinetic energy cutoff of 450 eV to account for
valence electrons. When the energy change was smaller than 107> eV,
we considered the electronic energy self-consistent, but when it was
lower than 0.02 eV A~), we considered the geometry optimization
convergent. The vacuum spacing was 18 A in a direction perpendicular
to the plane of the structure. We employed the DFT + D3 method to
depict weak interactions based on Grimme-scheme empirical
corrections.

2.9. Antibacterial tests

We used the plate-coating method to evaluate the antibacterial ac-
tions of the materials against Staphylococcus aureus (S. aureus) in the
synthesized samples in vitro. We placed 160 pL of S. aureus (107 CFU/
mL) and 40 pL of aqueous sample solution (0.5 mg/mL) in 96-well
plates. While one group of samples was not irradiated with light, the
other group was treated with 808 nm NIR light (0.24 W/cm?) irradiation
for 20 min. Thereafter, we evenly coated 20 pL of mixed solution onto
agar plates, cultivated it at 37 °C in an oven for 24 h, and recorded and
calculated the antibacterial rate. We calculated the antibacterial effi-
ciency of the experimental group using the following equation: anti-
bacterial rate (%) = [1'(CFUexperimenta1 group/ CFUcontrol group)] x 100 %.

Bacterial SEM: Following completion of the antibacterial process, we
placed the bacterial solution in a refrigerator for 2 h, discarded the su-
pernatant in the well plate, retained the precipitate, and added glutar-
aldehyde to fix the bacteria. After completing the bacterial fixation, we
washed the bacterial precipitate with phosphate-buffered saline (PBS)
three times. We then dehydrated the bacteria using a gradient with
different ethanol concentrations for 15 min at a time. Thereafter, when
the precipitate dried, we adopted SEM to observe and photograph the
bacterial morphology.

Protein leakage: We detected bacterial protein leakage using a
bicinchoninic acid disodium (BCA) reagent. First, we mixed 40 pL of
aqueous sample solution (0.5 mg/mL) with 160 pL of 10’ CFU/uL bac-
teria liquid containing S. aureus and irradiated the mixture with 808 nm
light for 10 min. We centrifuged the bacterial solution at 4 °C and 6000
rpm/min after 20 min of 808 nm light irradiation. We added the su-
pernatant of each group to 200 pL of BCA reagent and placed the mixed
solution in an incubator at 37 °C for 30 min. Thereafter, we measured
the optical density (OD) value of 562 nm of the mixed solution using a
microplate reader.

Bacterial cell membrane permeability assay: After completing the
light-induced antibacterial process, we handled the mixed solution with
an ortho-nitrophenyl-beta-galactoside (ONPG) kit. This used a micro-
plate reader, and the OD value of the supernatant was analyzed at 420
nm.

Cellular reactive oxygen species detection: We used a ROS assay kit
to measure intracellular ROS. Before adding the samples, we incubated
107 CFU/mL of bacteria in 96-well plates with a DCFH-DA diluent (10
pL), followed by irradiation for 20 min. We left the bacterial solution for
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Fig. 1. a) SEM morphology of ZIF-8 (scale bar = 200 nm). b) SEM morphology of S-ZIF-8 (scale bar = 200 nm). ¢) TEM morphology of S-ZIF-8/GO (scale bar = 50
nm). d) HRTEM image of S-ZIF-8/GO (scale bar = 5 nm). e) Elemental distribution of S-ZIF-8/GO (scale bar = 100 nm).

4 h before removing the supernatant from the wells, retained the pre-
cipitate, dried it, and photographed it using fluorescence microscopy.

2.10. Cytocompatibility evaluation

Cell toxicity assay: We used NIH-3T3 cells and 3-[4,5-dimethylthia-
zol-2-yl]-2,5-diphenyl-etrazoliumbromide (MTT) to investigate the
cytotoxicity of the synthetic samples using a cell toxicity assay. We
sterilized the samples with UV irradiation and immersed them in cell
medium (0.1 mg/mL) for 24 h after centrifugation to extract a solution,
which we then used in subsequent cell experiments. After incubating the
NIH-3T3 cells for 24 h in 96-well plates, we discarded the cell medium
and added 200 pL of solution extracted from different samples to the
wells. We incubated the solution with NIH3T3 cells for 24 h. Thereafter,
we removed the cell medium before injecting 200 pL PBS solution of
MTT (0.5 mg/mL) into the 96 wells and culturing it for a further 4 h at
37 °C. After removing the MTT solution, we added 200 pL of dimethyl
sulfoxide (DMSO) and shook the mixture for 15 min. Finally, we sub-
jected the supernatant liquid to OD value measurement with a micro-
plate reader (490 nm).

Cell Morphology: After coculturing NIH3T3 cells for 12 h, we rinsed
the cells in 96-well plates three times with sterile PBS and fixed them in
4 % formaldehyde for 10 min. We stained the cells with FITC for 30 min,
and thereafter rinsed the cells 3 times with PBS, stained them for 30 s
with DAPI, and washed them 3 times with PBS. We obtained cell
morphology images with an inverted fluorescence microscope.

Hemolytic Rate Test: We performed hemolysis tests with fresh mouse
(Balb/c) blood. We centrifuged the blood at 3000 rpm/min for 15 min
and discarded the supernatant to collect red blood cells. We then washed
the red blood cells three times with saline and dispersed them in saline.
We mixed 0.5 mL of saline solution with the samples (0.2 mg/mL) with
0.5 mL of 10 % red blood cell dispersion. After incubating the mixed
solution at 37 °C for 4 h, we centrifuged it at 3000 rpm for 15 min. We
then determined the OD value of the supernatant at 570 nm using a
microplate reader. The negative control was saline, and the positive
control was water. We calculated the hemolytic rates (RHR %) of the
samples using the following equation: RHR (%) = (Asample-Apss)/ (Awater-
Apgs)-

2.11. In vivo animal assay

For this experiment, we obtained male BALB/c mice (weight 18-20 g
each) from Huazhong Agricultural University Animal Hospital. The
Animal Research Committee of Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, authorized the experi-
mental animal protocol. We conducted all experimental procedures ac-
cording to the Animal Administration Regulations of the Ministry of
Health of the People’s Republic of China and the Guidelines for the Care
and Use of Laboratory Animals in China. We separated the mice into
three groups (Ctrl, 3 M, and S-ZIF-8/GO), which we further divided into
3 time groups of 2, 5, and 10 days, with 12 mice in each group. After
anesthesia, we made wounds in the backs of the mice with tools, and we
mixed a 20 pL bacteria solution (10% CFU/mL) with 1 mg/mL of S-ZIF-8/
GO (experimental group). After 808 nm light irradiation for 20 min, we
applied standard wound dressings to the 3 M group, fed the mice in a
suitable environment, and then examined and photographed the
wounds at 2, 5, and 10 days. Each time, we sacrificed three mice from
each group to perform routine blood tests. We also excised the wounds
and surrounding skin and stained the wounds with Giemsa and hema-
toxylin and eosin (H&E) for 2 days, 5 days, and 10 days, respectively. We
used two stains to assess the bacterial infection of the wounds. To assess
the biological toxicity of S-ZIF-8/GO, we removed the kidneys, spleens,
livers, hearts, and lungs of the mice at 10 days and stained them with
H&E.

3. Results and discussion
3.1. Characterization of the material

The SEM images revealed that ZIF-8 had a dodecahedron structure
(Fig. 1a). The morphology of ZIF-8 was not altered after S doping, and
the morphology of S-ZIF-8 resembled that of ZIF-8. The corresponding
SEM images are depicted in Fig. 1b. The elemental mapping, illustrated
in Fig. Sla and b, showed that the C, N, Zn, and S elements were well
distributed across the S-ZIF-8 sample. The TEM images of S-ZIF-8/GO
revealed that S-ZIF-8 had a dodecahedron structure and GO had a
wrinkled thin-layer structure (Fig. 1c). The TEM images and energy-
dispersive spectroscopy maps disclosed sufficient contact between GO
and S-ZIF-8 (Fig. 1d) and homogeneous distributions of S, N, C, and Zn in
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Fig. 2. a) XRD patterns. b) FT-IR patterns. c) XPS spectra. d) C 1 s high-resolution scanned images of ZIF-8, S-ZIF-8, and S-ZIF-8/GO. e) Zn 2p high-resolution scanned
images of ZIF-8, S-ZIF-8, and S-ZIF-8/GO. f) S 2p high-resolution scanned images of S-ZIF-8 and S-ZIF-8/GO.

the S-ZIF-8/GO (Fig. 1e). The boundary between S-ZIF-8 and GO in
Fig. 1d indicated excellent integration, and the HRTEM image confirmed
that GO was successfully combined with S-ZIF-8. From the dynamic light
scattering (DLS) data, we observed that the S-ZIF-8/GO dispersed ho-
mogeneously in water, with an average size of about 100-1000 nm
(Fig. S2).

Through XRD, we identified the phase structure (Fig. 2a). The ZIF-8
showed characteristic peaks at 7.3°, 10.3°, 12.8° and 18.25°, which
corresponded to crystal planes (011), (002), (112), and (222),
respectively, as previously reported [49]. No significant new charac-
teristic peaks were found in the XRD spectra of S-ZIF-8, indicating that
the introduction of S into the ZIF-8 particles did not alter their crystal
phase structure. This phenomenon suggests that S incorporation might
be achieved by replacing some of the atoms in the ZIF-8 framework [50].
After GO incorporation, the XRD images of S-ZIF-8/GO resembled those
of ZIF-8/GO. The peaks at 11° of ZIF-8/GO corresponded to the char-
acteristic diffraction peak of GO [51]. As shown in Fig. 2a, the intensity
of the characteristic diffraction peak of the GO signal declined due to the
low GO content in ZIF-8/GO [52]. Regarding S-ZIF-8/GO, the charac-
teristic diffraction peak of GO at 11° was absent, which can be attributed
to the distortion of the stacked GO [53]. However, the predominant
diffraction patterns of S-ZIF-8 remained in S-ZIF-8/GO, although the
intensity of the peaks decreased. These patterns were consistent with the
composition of the S-ZIF-8/GO, since S-ZIF-8 was the main component.

To investigate further, we studied the functional groups in S-ZIF-8
and S-ZIF-8/GO using Fourier transform infrared spectroscopy (Fig. 2b).
ZIF-8 showed a characteristic peak of the imidazole ring from 650 cm ™!
to 1550 cm ™! and a Zn-N chemical bond peak at 424 cm™!. We attrib-
uted the characteristic peaks at 3135 cm™! and 2937 cm ™! in ZIF-8 to
the unsaturated hydrocarbons C-H and C-H(CHs), respectively [54].
After S doping, the previous functional groups in S-ZIF-8 still existed.
Moreover, the peak at 800-900 cm ™! formed a new S-based bond in the
S-ZIF-8 [43]. S-ZIF-8/GO and ZIF-8/GO exhibited a typical GO peak at
3,606 cm! after the addition of GO, which corresponded with the O-H
bond [55-59]. In conclusion, the presence of characteristic S-ZIF-8
peaks with GO in S-ZIF-8/GO demonstrated that GO was successfully
doped with S-ZIF-8.

The XPS survey spectra (Fig. 2¢) for ZIF-8 consisted of diffraction
peaks for Zn, C, and N elements, and S-ZIF-8 comprised Zn, C, N, and S
element diffraction peaks. The S diffraction peak revealed that S was
successfully doped with ZIF-8. After adding GO, the O peak was present

in the XPS survey spectra of ZIF-8/GO and S-ZIF-8/GO and belonged to
GO. Fig. 2d shows the C 1 s XPS spectrum. The high-resolution C 1 s
spectrum in ZIF-8 showed that it belonged to the C-N and C-C bonds at
285.9 eV and 284.8 eV, respectively. After S doping, we observed C-N
and C-C bond peaks at 284.6 eV and 283.6 eV, respectively. The C-C and
C-N bond peaks of S-ZIF-8 shifted to a lower energy than that of pure
ZIF-8, suggesting that S introduced negative charges [43]. The zeta
potential implied that S doping introduced a negative charge, ZIF-8 was
positively charged, and the potential of S-ZIF-8 decreased significantly
after S doping (Fig. S3). The emergence of a characteristic peak at about
285.3 eV also demonstrated a combination of C and S, suggesting that S
probably replaced the N atom, formatting the C-S bonds [60,61]. Fig. S4
presents the N 1 s XPS spectrum. The high-resolution spectrum of N 1 s in
ZIF-8 showed that it belonged to the Zn-N and C-N bonds at 399.4 eV
and 398.8 eV, respectively. After S doping, the characteristic peaks at
399.1 eV and 398.6 eV shifted to a lower energy than in pure ZIF-8. As
shown in Fig. 2e, compared with ZIF-8 and S-ZIF-8, the Zn 2p peaks of S-
ZIF-8 shifted to a lower energy. The binding energies at 1044.6 and
1021.7 eV in S-ZIF-8, and 1045.8 eV and 1022.8 eV in S-ZIF-8/GO, could
be attributed to the formation of a Zn-based band with S in S-ZIF-8,
confirming the successful intramolecular modulation related to Zn
bonding [43,62]. The high-resolution spectrum of S 2p at 160.65 eV and
163.12 eV in S-ZIF-8 (Fig. 2f). The peak deconvoluting into two peaks
centered at 160.65 eV and 163.12 eV belonged to S, confirming chem-
ically bonded S moieties in S-ZIF-8. These phenomena indicate that the S
elements were successfully doped in the S-ZIF-8 sample by replacing
lattice N to form new bonds (Zn-S) [55,63].

We conducted a BET test on the materials (Fig. S5). The BET surface
area of ZIF-8 was 555.997 m?g 1. After S doping, the BET surface area of
S-ZIF-8 increased to 634.592 ng’l (Fig. S5a), which could have
resulted from embedded S altering the pore structure of ZIF-8. Small
quantities of weakly bonded imidazole molecules were removed from
ZIF-8 at 200 °C, at which time the S combined with ZIF-8, enlarging the
pore size of ZIF-8 [64]. After reaching room temperature, some of the S
particles entered the pore structure and formed larger pore sizes [65].
After adding GO, the BET surface area of ZIF-8/GO was 40.741 m?g™},
and the BET surface area of S-ZIF-8/GO was 492.803 m?g L. A signifi-
cant reduction in the BET surface area of ZIF-8/GO may be attributable
to the collapse of part of the structure of ZIF-8/GO (Fig. S1c), whereas S-
ZIF-8/GO could still maintain the complete structural morphology
(Fig. S1d). The Ho0 molecules changed the hydrophobic-hydrophilic
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balance of ZIF-8, causing OH™ ions to attack the unsaturated Zn or N
sites and subsequently inducing the destruction of Zn-N bonds in ZIF-8
frameworks [47]. After S doping, S partially replaced the N atom, which
made the S-doped ZIF-8 structure more stable, and the Zn-S bond could
not be destroyed by H,0. By comparing the pore sizes of these materials
(Fig. S5b), we found that the doping of S and GO hardly changed their
pore size distribution.

3.2. Photothermal and photocatalytic performance

Fig. 3a and b display the photothermal properties of the materials.
Under 808 nm NIR light irradiation, GO had excellent photothermal
properties, and the temperature of GO reached 50 °C, but pure S-ZIF-8
and ZIF-8 exhibited no obvious photothermal properties. After
combining ZIF-8 with GO, the ZIF-8/GO nanocomposite increased the
temperature to 40 °C. After S-ZIF-8 was added to GO, the S-ZIF-8/GO
had the highest temperature, at approximately 60.6 °C. Fig. S6 illus-
trates the linear regression curve of the negative natural logarithm of
temperature and time of S-ZIF-8/GO and ZIF-8/GO during the cooling
phase. The n value was calculated based on the results of the time
constant for heat transfer and the maximum steady-state temperature.
The S-ZIF-8/GO sample had a higher n value (29.264 %) than the ZIF-8/
GO sample (27.567 %). According to reports, the photothermal con-
version efficiency of S-ZIF-8/GO was much higher than that of con-
ventional photothermal nanomaterials, such as Au nanorods (21 %) and

CugSs (25.7 %) [66,67]. S-ZIF-8/GO could generate a large amount of
heat under 808 nm NIR light irradiation, since it contained many more
electron loops between the S-ZIF-8 and GO for electron motion [68,69].
The temperature of S-ZIF-8/GO exhibited a stable on/off effect under
808 nm NIR light irradiation (Fig. 3c), indicating that S-ZIF-8/GO
exhibited excellent photothermal stability.

We evaluated the optical characteristics of the materials using
UV-vis diffuse reflectance spectra. The absorption value shows the light-
trapping ability; the larger the value, the stronger the ability to absorb
light. The absorption characteristic peaks of ZIF-8 were distributed in
the UV region, with poor absorption in the NIR region (Fig. 4a). After
combining S-doped ZIF-8 with GO, the S-ZIF-8/GO exhibited a greater
NIR light-absorption capacity. The S doping of ZIF-8 reduced the band
gap, making it easier for photogenerated electrons to be excited and
transferred to GO. A greater charge transfer induced greater electron
ring production, which resulted in excellent photothermal properties
[68,70]. The PL spectra revealed the recombination rates of the photo-
generated electrons in the samples. The PL spectrum in Fig. 4b exhibited
the highest fluorescence intensity for ZIF-8 compared to the other
samples. The PL spectrum showed a lower fluorescence intensity for S-
ZIF-8/GO than for the other samples. This phenomenon suggests that S
doping combined with GO could decrease the recombination rate of ZIF-
8 electron-hole pairs.

Fig. 4c shows the photocurrent densities of the synthesized samples
under 808 nm light irradiation. The photocurrent density of S-ZIF-8/GO
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was stronger than that of the other samples, demonstrating the excellent
photogenerated electron transfer capability of S-ZIF-8/GO under 808
nm light irradiation. We used EIS to analyze the impedance of the syn-
thesized materials. Fig. 4d shows that S-ZIF-8/GO exhibited the smallest
slope of the curves, indicating the smallest impedance of S-ZIF-8/GO.
The EIS and photocurrent density measurements indicated that the
interface formation between S-ZIF-8 and GO decreased impedance and
facilitated the rapid transfer of photogenerated electrons.

We used DCFH to measure the total ROS yield. After 20 min of 808
nm light irradiation, S-ZIF-8/GO exhibited the highest yield of ROS
(Fig. 4e). We detected the ESR signal using capture reagents DMPO and
TEMP to study the type of ROS generated in the samples. DMPO dye
detected -05 and TEMP dye detected 'O,. Following 808 nm light
irradiation, S-ZIF-8/GO exhibited the highest yield of -O2 and 102
(Fig. 4f and g). Fig. S7 shows the ROS yield of S-ZIF-8/GO under 808 nm
light irradiation after three cycles. It was evident that as the cyclic
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number of irradiations increased, the ROS yield of S-ZIF-8/GO
decreased, implying that the composite had poor catalytic stability after
recycling three times. The XRD patterns of the S-ZIF-8/GO composite
before and after three consecutive 808 nm light irradiations are shown
in Fig. S8. Fig. S8 reveals that after three consecutive 808 nm light ir-
radiations, S-ZIF-8/GO exactly matched the diffraction peak of the
without-light irradiations S-ZIF-8/GO, indicating that S-ZIF-8/GO had
excellent stability.

Fig. 4h shows the EPR spectra for each material, illustrating the
strong symmetric signals caused by these electron excess centers. This
could be inferred from the increase in signal intensity, indicating that
the local electron excess concentration in S-ZIF-8 increased compared to
ZIF-8, suggesting that the electron density of ZIF-8 changed, and elec-
tron excess centers increased, after S doping [71]. The strongest signal
was observed when we combined S-ZIF-8 with GO, caused by the un-
saturated bonds in GO and the electron excess centers introduced by S
doping. The results showed that ZIF-8 was doped by S and then com-
bined with GO to form a heterojunction that enhanced photocatalytic
efficiency [72].

3.3. Photocatalytic mechanism

We characterized the EPR spectra of S-ZIF-8 and S-ZIF-8/GO with
and without light irradiation. The EPR spectra recorded in Fig. 5a show
the ESR signals of S-ZIF-8, for which the intensity decreased after light
irradiation. The Zn-S bond could be used as a charge trapping site [54].
After S doping ZIF-8, Zn-S bonds trap electrons to form holes in ZIF-8.
After light irradiation, electrons are excited to “neutralize” these
holes, resulting in a decrease in signal intensity [73]. The EPR spectrum
recorded in Fig. 5b shows the signal of S-ZIF-8/GO, which became
stronger after light irradiation, indicating that the photogenerated
electrons were transferred from S-ZIF-8 to GO under 808 nm light
irradiation.

According to the Kubelka-Munk formula, we calculated the band

structure of S-ZIF-8/GO (Fig. 5c¢ and d) from the UV-vis spectra in
Fig. 4a [74]. We further analyzed the energy band structure of the
sample using ultraviolet photoelectron spectroscopy (UPS) detection.
From the UPS spectra of the materials (Fig. 5e and f), we computed the
work function (®) of ZIF-8 and S-ZIF-8 as 4.82 eV and 4.86 eV,
respectively. We computed the Fermi energy levels (Er) of ZIF-8 and S-
ZIF-8 as —4.82 eV and —4.86 eV, respectively. The low binding energy
tail (Eeqge) Was the source of the energy gap between the valence band
(Eyg) and Eg. Therefore, the Eyg and the conduction band (Ecg) of ZIF-8
were 4.3 eV and —0.8 eV, respectively. The Eyg and Ecp of S-ZIF-8 were
1.4 eV and —0.38 eV, respectively. Based on the preceding analysis, the
electronic energy band structures of ZIF-8 and S-ZIF-8 are shown in
Fig. 5g. The S doping caused the energy gap of S-ZIF-8 to narrow,
resulting in stronger photocatalytic properties. Under 808 nm light
irradiation, S-ZIF-8 produced photogenerated electron-hole pairs and
GO as an electron acceptor of S-ZIF-8, transferring the electrons in S-ZIF-
8 to GO, which restricted the recombination of electron-hole pairs, thus
improving the photocatalytic properties of S-ZIF-8/GO and generating a
high amount of -Oz and 10,.

3.4. Theoretical calculations

We studied the photocatalytic mechanism of S-ZIF-8/GO further
using DFT theoretical calculations. As for S-ZIF-8, the charge density
difference (CDD) plot showed the charge distribution between the Zn-S
bond (Fig. 6a), electron accumulation (yellow region), and depletion
(blue region). The CDD of S-ZIF-8 showed electron accumulation at the
Zn-S bond, creating a substantial charge distribution and indicating that
the Zn-S bond could promote the separation of the electron-hole pair
and provide a faster electron transfer channel. The CDD plot showed the
charge distribution between S-ZIF-8 and GO, which suggested that a
built-in electric field was formed at the interface, facilitating electron
transfer (Fig. 6b). To quantitatively investigate the changes in charge
and transfer, we performed a Bader charge analysis of the composite
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*p < 0.05, **p < 0.01, ***p < 0.001.

material. Fig. 6¢ shows a 0.002 electron charge from ZIF-8 to GO, which
increased to a 0.087 electron charge due to the existence of the Zn-S
bond. The results showed that the Zn-S bond accelerated the transfer of
electrons from S-ZIF-8 to GO, which was beneficial for enhancing the
photocatalytic performance of the heterojunction [75,76]. It has been
reported that the transfer of foreign electrons to O is a feasible way to
change its spin state and achieve oxygen activation [77]. Since Oy
played a significant role in the photocatalytic generation of ROS, we
computed the adsorption energy and magnetic distance (Mag) of O, at
the S-ZIF-8/GO and ZIF-8/GO interfaces according to the DFT calcula-
tions (Fig. 6d). The oxygen adsorption energy of ZIF-8/GO (-4.24 eV)
was higher than that of S-ZIF-8/GO (-6.27 eV), demonstrating that the S-
ZIF-8/GO had a strong oxygen absorption capacity. Oz had a spin-flip
limitation, which the activation of O, needed to overcome [78]. It is
known that a lower Mag of Oy means a higher degree of spin-flip. We
found that the Mag of S-ZIF-8/GO (1.5554 pb) was lower than that of
ZIF-8/GO (6 ub), implying greater activation of Oy in S-ZIF-8/GO.

The density of the electronic states (DOS) of ZIF-8 (Fig. 6e) showed
that the valence band (VB) of ZIF-8 was primarily sourced from the 2p
state of N and C atoms and the 3d state of Zn atoms, and the CB was
primarily sourced from the 2p state of N and C atoms, suggesting that the
organic ligands primarily contributed to the VB and CB of ZIF-8, whereas
the Zn ions primarily contributed to the VB. The introduction of S altered
the VB of ZIF-8, demonstrating the likelihood that the S atom interacted
principally with the organic ligand of ZIF-8. Adding the S energy level
could decrease the energy of the electron leap necessary to promote
electron separation and transfer. After combining ZIF-8 with GO, the VB

of the ZIF-8/GO was primarily sourced from the 2p state of O, N, and C
atoms and the 3d state of Zn atoms. We observed greater Fermi energy-
level hybridization, indicating that GO promoted electron transfer in
ZIE-8. After combining S-doped ZIF-8 with GO, more Fermi energy-level
hybridization became evident in S-ZIF-8/GO, demonstrating that the
simultaneous addition of S and GO enhanced the electron transfer in ZIF-
8. From the theoretical calculations and tests of photocatalytic perfor-
mance, we inferred that the Zn-S bond in S-ZIF-8/GO could facilitate the
separation of electrons and holes, accelerating the transfer of electrons
from S-ZIF-8 to GO, and thus allowing the photogenerated electrons to
bind O and activate O; to produce ROS.

3.5. Invitro antibacterial activity

We determined the antibacterial effect of the synthesized samples
against S. aureus using the plate-coating method. These samples
exhibited almost equal bacterial colonies after 20 min of incubation
without light irradiation (Fig. 7a and b), and the results revealed that the
samples exhibited no significant antibacterial activity against S. aureus
under dark conditions. In contrast, few bacterial colonies appeared in
the S-ZIF-8/GO group after 20 min of 808 nm NIR light irradiation,
indicating that S-ZIF-8/GO exhibited the strongest antibacterial action
against S. aureus. In Fig. 7b, the S-ZIF-8/GO had an antibacterial rate of
99.6 %. This excellent antibacterial rate may be attributed to the fact
that the Zn-S bond promoted the transfer of electrons from S-ZIF-8 to
GO, preventing the recombination of electron-hole pairs and enabling S-
ZIF-8/GO to generate a high enough temperature and a large amount of
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FE-SEM further revealed bacterial morphologies that proved the
antibacterial effects of the synthesized samples (Fig. 7c). All groups of
bacteria were smooth and intact without 808 nm light irradiation,
confirming no damage to the bacterial membrane. However, the bac-
terial membrane in the S-ZIF-8/GO group was severely wrinkled or even
broken after 808 nm light irradiation (marked with red arrows), which
we attributed to the hyperthermia treatment and the ROS destruction
effect of the S-ZIF-8/GO under 808 nm light irradiation. The results
indicated that S-ZIF-8/GO could kill bacteria by damaging the bacterial
membrane under 808 nm NIR light irradiation within 20 min. To eval-
uate the antibacterial mechanism of the synthesized materials, we
employed an ONPG hydrolysis assay to assess the bacterial permeability
of the membrane (Fig. 7d). The experimental data exhibited the highest
ONPG values for the S-ZIF-8/GO group against S. aureus, showing that
the bacterial permeability of the membrane of the S-ZIF-8/GO group was
enhanced under synergistic photocatalytic and photothermal effects.

After the antibacterial experiment, we investigated ROS within the
bacteria using DCFH-DA. According to the ROS Assay Kit, DCFH-DA was
nonfluorescent and readily passed through the bacterial cell membrane
into the bacteria, where esterase hydrolyzed it to create DCFH. How-
ever, the DCFH could not pass through the bacterial cell membrane,
allowing the probe to be loaded easily into the bacteria. ROS in the
bacteria could then oxidize DCFH to generate green fluorescence. The
level of ROS produced by the bacteria was reflected in the bacterial DCF
fluorescence [79]. The fluorescence images of the treated bacteria
revealed that the fluorescence intensity of each group in the dark did not
differ greatly from that of the Ctrl group, indicating that the material in
the groups did not cause oxidative stress within the bacteria in the dark.
After 20 min of 808 nm light irradiation, the S-ZIF-8/GO group exhibited
the greenest fluorescence (Fig. 7e), indicating the most significant
intracellular ROS production in the S-ZIF-8/GO group. This could be
attributed to ROS entering the bacteria following bacterial membrane
rupture during irradiation.

We studied the BCA protein leakage of bacteria. When the membrane
of the bacteria was disrupted, the proteins inside the bacteria leaked out.
After 808 nm light irradiation, the protein leakage of S. aureus cocul-
tured with the material gradually increased with the enhanced photo-
thermal and photocatalytic effects of the material, among which the
protein leakage within the bacteria of S-ZIF-8/GO group was the largest
(Fig. 79).

10

There was almost no difference in the release of Zn?" from S-ZIF-8/
GO before and after irradiation (Fig. S9), indicating that S-ZIF-8/GO did
not increase the release of Zn>* during the photocatalytic sterilization
process.

In conclusion, under 808 nm light irradiation, S-ZIF-8/GO generated
hyperthermic, 10, and -03. The bacterial cell membrane was destroyed,
exhibiting increased permeability due to hyperthermia caused by the
photothermal effect of S-ZIF-8/GO. The 10, and -O3 entered more easily
into the bacteria after efficiently enhancing the membrane permeation
of bacteria. 102 could induce additional oxidative lesions in the cell wall
and membrane, which enhanced the susceptibility of the bacteria to heat
[80]. -O3 can degrade multiple pivotal biological molecules, such as
DNA strands and membrane proteins, and influence thymidine incor-
poration activity in DNA synthesis, among other effects [81]. The
entrance of 102 and -O; into the bacteria damaged the internal sub-
stances to destroy the bacteria (Fig. 8).

3.6. In vitro cytocompatibility

We assessed the cytotoxicity of the synthesized materials after 1, 3,
and 7 days using an MTT assay, as displayed in Fig. S10a. ZIF-8 and ZIF-
8/GO exhibited significant toxic effects on cells, perhaps due to the
excessive amount of Zn ions released. The S-ZIF-8 and S-ZIF-8/GO
groups exhibited excellent biocompatibility, which we attributed to the
decreased release of Zn ions.

The fluorescence staining images of the cells (Fig. S10b) showed that
the cells in the Ctrl group had normal morphology with complete nuclei
and cytoplasm. Compared with the Ctrl group, the cell morphology of
the S-ZIF-8 and S-ZIF-8/GO groups was normal, indicating that the S-
ZIF-8 and S-ZIF-8/GO were not obviously cytotoxic. However, the cells
in the ZIF-8 and ZIF-8/GO groups displayed a shrunken shape caused by
a large release of Zn ions.

To further evaluate the safety of the samples, we performed an in
vitro hemolysis test (Fig. S11). We used saline and DI as negative and
positive controls because red blood cells could be lysed in DI at hyper-
tonicity, whereas saline could not. After being cocultured with red blood
cells for 4 h, the hemolysis rate of S-ZIF-8/GO was lower than the in-
ternational standard (5 %) in all cases, demonstrating that the sample
had no significant hemolytic activity.

Fig. S12 shows the release of Zn ions from ZIF-8/GO and S-ZIF-8/GO.
The introduction of S significantly reduced the release of Zn ions,
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0.01, ***p < 0.001.

resulting in a consequent significant reduction in the toxicity of the
materials.

3.7. In vivo antibacterial activity and biosafety

We assessed wound healing using mice with skin wounds, and Fig. 9a
shows the wound-healing process after various periods. After undergo-
ing treatment for 10 days, the wounds of the mice in the S-ZIF-8/GO
group had largely healed, while those of the mice in the Ctrl and 3 M
groups had not. We created a histogram based on the wound areas, as
shown in Fig. 9b, and the wound area changes revealed that the S-ZIF-8/
GO group had smaller wounds than all the other groups.

Neutrophils migrate rapidly through the circulatory system to the
area of infection when a bacterial infection occurs in the body. After 10
days of treatment, we collected whole blood for routine blood analysis
from all groups of mice (Fig. 9c). The results revealed that the colors of
the white blood cell count (WBC), lymphocyte percentage (Lym), and
neutrophil percentage (GR) in the S-ZIF-8/GO group were lighter than
those of the Ctrl and 3 M groups, which revealed that the S-ZIF-8/GO
group had the lowest number of inflammatory cells and the least
inflammation in all the mice.

After 5 days of treatment, Giemsa staining revealed severe bacterial
infections in all groups (Fig. 9d). The amounts of bacteria around the
wounds in the S-ZIF-8/GO treatment group were obviously lower than
those in the Ctrl and 3 M groups. Neutrophils respond to infection by
rapidly migrating from the circulating blood to the site of infection,
indicating the presence of a bacterial infection in the soft tissues. The
H&E staining results for the wound tissue (Fig. 9e) showed many neu-
trophils in the Ctrl and 3 M groups (marked by red arrows). This phe-
nomenon indicated severe bacterial infections in the wounds of the Ctrl
and 3 M groups. The number of neutrophils in the S-ZIF-8/GO group was
far less than that in the Ctrl and 3 M groups, and most of the cells were
normal, reflecting the fact that S-ZIF-8/GO had excellent antibacterial
properties and a relatively small risk of infection in the body.

Staining analysis of the mouse spleens, kidneys, livers, lungs, and
hearts (Fig. 9f) showed no abnormalities in these major organs after 10
days of treatment, indicating that S-ZIF-8,/GO was not significantly toxic
in vivo.
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4. Conclusion

In this work, we successfully prepared S-ZIF-8/GO heterojunctions,
which have excellent antibacterial effects under 808 nm light excitation.
The novelty of this study is that we could adjust the band gap of ZIF-8 by
doping and establishing a heterogeneous interface to achieve an excel-
lent photoresponse under 808 nm light stimulation. Experimental and
theoretical calculations confirmed that the Zn-S bond was formed by
replacing S with partial N atoms in the ZIF-8 framework; the Zn-S bond
provided electron transfer channels, and the combination of ZIF-8 and
GO formed a built-in electric field that effectively separated electro-
n-hole pairs. When near-infrared light irradiated S-ZIF-8/GO, the pho-
togenerated electrons rapidly transferred from S-ZIF-8 to GO under the
effect of the Zn-S bond and built-in electric field, meaning that more
electrons participated in the formation of ROS, which improved the
photocatalytic effect and antibacterial property of S-ZIF-8/GO. The
synthesized S-ZIF-8/GO has the following advantages: stable photo-
thermal properties, photocatalytic properties, recyclability, and an
efficient 99.9 % antibacterial effect after 20 min of 808 nm light without
cytotoxicity. In vivo experiments showed that S-ZIF-8/GO could accel-
erate wound healing and was safe in vivo. The disadvantage of S-ZIF-8/
GO was that NIR light has limited penetration, so it is restricted in
treating deep tissue infections. This study offers new insights into the
development of MOF-based photoexcited bactericidal materials.
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